Privacy-Preserving Random Kernel Classification of Checkerboard Partitioned Data

نویسندگان

  • Olvi L. Mangasarian
  • Edward W. Wild
چکیده

We propose a privacy-preserving support vector machine (SVM) classifier for a data matrix A whose input feature columns as well as individual data point rows are divided into groups belonging to different entities. Each entity is unwilling to make public its group of columns and rows. Our classifier utilizes the entire data matrix A while maintaining the privacy of each block. This classifier is based on the concept of a random kernel K(A,B′) where B′ is the transpose of a random matrix B, as well as the reduction of a possibly complex pattern of data held by each entity into a checkerboard pattern. The proposed nonlinear SVM classifier, which is public but does not reveal any of the privately-held data, has accuracy comparable to that of an ordinary SVM classifier based on the entire set of input features and data points all made public.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-Preserving Classification of Horizontally Partitioned Data via Random Kernels

We propose a novel privacy-preserving nonlinear support vector machine (SVM) classifier for a data matrix A whose columns represent input space features and whose individual rows are divided into groups of rows. Each group of rows belongs to an entity that is unwilling to share its rows or make them public. Our classifier is based on the concept of a reduced kernel K(A,B) where B is the transpo...

متن کامل

Privacy Preserving Näıve Bayes Classifier for Vertically Partitioned Data

Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...

متن کامل

Privacy Preserving Naïve Bayes Classifier for Vertically Partitioned Data

Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...

متن کامل

Towards Attack-Resilient Geometric Data Perturbation

Data perturbation is a popular technique for privacypreserving data mining. The major challenge of data perturbation is balancing privacy protection and data quality, which are normally considered as a pair of contradictive factors. We propose that selectively preserving only the task/model specific information in perturbation would improve the balance. Geometric data perturbation, consisting o...

متن کامل

Performance Analysis of Privacy Preserving Naïve Bayes Classifiers for Distributed Databases

The problem of secure and fast distributed classification is an important one. The main focus of the paper is on privacy preserving distributed classification rule mining. This research paper addresses the performance analysis of privacy preserving Naïve Bayes classifiers for horizontal and vertical partitioned databases. The Naïve Bayes classifier is a simple but efficient baseline classifier....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010